YW W T T

W

. UG EILE COPY g D @

Final Report

Sponsored by

Defense Advanced Research Projects Agency (DOD)
Information Processing Technology Office

Building Software Systems Economically with Mechanized Logic:
Initial Design Proposal

AD-A188 791

"/ ARPA Order No. 5246 ¥

Issued by Naval Electronic Systems Command under
Contract NO0039-85-K-0085 ,/

Donald I. Good
J Strother Moore
Matt Kaufmann

June 30, 1987

Institute for Computing Science
2100 Main Building
The University of Texas at Austin
Austin, Texas 78712
(512) 471-1901

Accession For

::‘%g TAB : APPROVED FOR PULLIC

Unannounced = NDISTRIBUTION UNLIMITED
wioation&
By.

Distribution/

Avanabuitr Codes
Avail and/or
Dist Special

A-l

-8

.87 5813

g7 A 3 026
_

Final Report 1

This report summarizes the work done under this contract in the context of the long-term research plan
described in [14]. That paper, which was formulated under the auspices of this contract, outiines a plan
for the development of Rose, an applicative language based on a formal logic with powerful mechanical
proof assistance. We report here the progress to date on Rose, including our related efforts, following
fairly closely the outline of the Research Plan[14). The first two sections of the Research Plan,
Introduction and Historical Foundations, provide additional background on our perspective; we omit
them from our outline here, however. Instead, we include a brief summary of our study of related work in
the first section below.

We should mention that Rose will grow out of the existing computational logic of Boyer and Moore,
described in [6, 7, 8]. Indeed, we identify the current version of the Rose language and logic with the
current Boyer-Moore computational logic.

1 Study of Related Work

During the second quarter of 1985, we participated in a close up evaluation of three other major
verification systems (along with our own Gypsy system): GE’s Affirm, SDC's Ina Jo/FDM, and SRI's
Revised SpecialHDM. A week long visit was in fact made to each of these sites 10 study and use the
local verification system and to discuss future verification directions with the local developers. The results
of these visits are described in a sequence of Internal Notes [11, 12, 13). The entire effort's conclusions
appear in the The Kemmerer study report [19].

\\§ Mechanizing Rose Logic

Our goal is to develop an economical technology for building proved computing systems with
mechanized formal logic. The unifying element of this technology is the functional language Rose which
we are designing. Rose embodies a powerful formal logic, and & also is an executable, functional
programming language. Thus, potentially, Rose provides a single, unified formalism that can express
both hardware and software systems and their specifications and requirements.

In the long term, with the development of parallel architectures and optimizing compilers that exploit
theorem proving, we believe that functional programming languages will be useful across a wide variety of
tasks. In the intermediate term, we intend that Rose be convenient for software applications such as
encryption boxes, flow modulators, message servers, etc~ These are the applications areas in which
Gypsy commonly is used today. In the short tenn.-wuaand that Rose be a convenient language in
which to specify and prove properties about von Neumann computing systems.

> The purpose of this phase of our work is 1o mechanize the Rose logic so that it can be used extensively
and economically in all of the previous kinds of activities. We will do this by increasing the power of
current Boyer-Moore logic and its theorem prover, by defining the Rose language which embodies the
expanded logic and presents & in a more conventional and familiar notation, and by implementing a
life-cycle support system for Rose that supports the development and maintenance of large collections of
Rose functions, theorems, and proofs. R

2.1 Rose Logic

Rose logic will ultimately be current Boyer-Moore logic extended to include
1. quantification over finite domains,

2. a simulation of functions as first-class objects,
3. partial recursive functions.
Much research has already been carried out by Boyer and Moore [8] to support these modifications.

An experimental version of the theorem prover supporting quantification over finite domains and partial
functions exists, and K is being tested. The steps necessary to release it for wide-spread use are:

Final Report 2

1. convince ourselves and our peers that the modified logic is consistent,

2. convince ourselves and our peers that the modifications made to the released version of the
theorem prover are correct, and

3. write the manual for the new logic and theorem prover.

To these ends, a report on the extended Boyer-Moore logic and theorem prover has been
completed [8]). A draft of a detailed user's manual has also been completed [5], describing not only the
basics of using the theorem prover but aiso containing many helpful tips for using it efficiently. h also
serves the rote of being a reference guide for the logic as it currently exists.

2.2 Rose Language

As mentioned above, the current Rose logic is the existing Boyer-Moore logic. What we desire is, at
the least, a more conventional and familiar notation for Rose logic than the Lisp notation that presently is
used in Boyer-Moore logic.

But the Rose language will evolve from the current Boyer-Moore logic in other ways besides sugaring
the syntax. For example, we expect Rose to contain mutual recursion and (more generally) a relaxation
on the current Boyer-Moore restrictions on the order of definitions. We also anticipate the inclusion of
name space control (scopes), a simulation of functions as first-class objects, type-checking, and Herative
forms and partial functions such as those already existing in the experimental new version of the Boyer-
Moore logic and prover [8].

In order to aid the development of the Rose language, a formal semantic definition of the language
Micro Gypsy (discussed below) was developed in an experimental Rose syntax [15]. This definition is the
basis for proving the correctness of the Micro Gypsy compiler. In addition, the type mechanism in the
Rose language was investigated by considering the difficulty of expressing, in Rose, the algorithms for
checking the well-formedness of Micro Gypsy expressions {22].

2.3 Rose Support System ‘

An experimental window-based interface to the Boyer-Moore prover was developed for Symbolics Lisp
Machines [2]. Although we expect 1o redesign this interface, Rs development provided valuable
experience.

2.4 Document Management

Preliminary investigation was made into the design of a Rose Development System. This system
would maintain consistency among related documents such as source, object, manuals, and so on. So
far, the most promising approach to document management that we have discovered is the Neptune
hypertext system [9] being developed by Tektronix to support CAD (Computer Alded Design) and CASE
(Computer Aided Software Engineering) systems. More thoughts on this matter may be found in the
Research Plan [14].

2.5 Theory Management, Reusable Theories

Some thought has been given to implementing a hierarchical Rbrary structure that allows one to merge
theories. This turns out 10 be a somewhat complicated issue in the setting of the current Boyer-Moore
system, but we believe such an improvement 10 be feasble. We have found iR quite helpful to reuse
theories - for example, we have libraries of arithmetic facts and facts about subsets that have been used
more than once -- and a hierarchical lbrary structure would encourage more theory reuse.

Final Repot 3

2.6 A "Smart” Blackboard

We imagine the user developing a system and its proof in a medium as fiexible as a blackboard but
which, unlike a blackboard, is active and is capable of manipulating the formulas inscribed on it as well as
following the arguments about them. We already mentioned the White Rose interface above, which is an
early step in this direction. In addition, an interpreter has been developed which includes a trace and
break package as well as a user's guide and technical documentation {1, 3). (We are well aware that
executability is extremely important in the development/acquisition of specifications.) Another feature of
this electronic blackboard should be a convenient means for querying the Boyer-Moore database. Some
recent additions made to the system for this purpose are documented in Chapter 12 of [5).

2.7 Building Trusted Systems

The mechanized logic whose development is described above will be used in building a variety of
trusted systems. As the power of the Rose system evolves, proofs of both von Neumann and functional
computing systems will be constructed. Conversely, use of the system will provide important feedback
into the development of the Rose logic, language, and support system.

The applications of Rose that we foresee include the following:
« a formal definition of the Rose language,
« a formal definition for a subset of Ada,
* a formal definition of the Micro Gypsy language,
* a formal definition of the FM8501 assembly language,
« a formal definltion of FM8501' (a successor to FM8501)
« a proof of correctness of a Micro Gypsy compiler 1o FM8501 (and FM8501°),
o a proof of correctness of a Micro Gypsy run-time executive for FM8501°,
o a proof of correctness of an FM8501 (and FM8501°) assembler,
o a proof of correctness of a Rose compiler,
o a proof of correctness of a Rose proof checker.

The remaining sections beiow report our progress foward proving correctness of von Neumann
systems and functional systems, respectively.

3 Proving von Neumann
Work proceeded toward the goal of producing a verticelly veriied system, i.e. a system

éi
i
i
i
3
!
;s
i
ég’;g
i

i
i
§
g.
’
i
|
i
it

progress. We discuss these all in tum below, excepting the assembler (which Is work
other support). Once the three components are compisted, their integration into a

%s
I

Figure 1 is taken from the paper [4], and Bustrates our plan 10
imﬂmﬂdﬁbwﬁmeMh
example the botiom paralielogram figure. There is a notion
siate as seon at the level of the machine instruction set. There s
state, i.0. a state as seen at the level of state-hokiing devices and combinational
abstract state (a prograsnmer-vieble siate) together with an intemel state. Now

f
i
g
H

l:‘
i
i
3

4
28
2
|
i

§
i
s

Final Repornt : 4

with an abstract state, as represented by the FM8501 box on the left side of the figure. The downward
arrow from that box represents the result of "completing” this abstract state 10 an appropriate concrete
state. The left-to-right arrow from the FM8501 box represents the “abstract run” of a given number of
instruction steps on that state, while the arrow below it represents the “concrete run® of a corresponding
(targer) number of instructions on the corresponding concrete state. The upward arrow on the lower right
completes the diagram, which means roughly that ¥ one takes the concrete state resulting from the
"concrete run” and abstracts from it a corresponding abstract state, then the result is the abstract state
resulting from the “abstract run”.

3.1 Hardware

We have designed and proved a microprocessor, called the FM8501, a conventional von Neumann
engine of roughly the complexity of a PDP-11.

FM8501 is a complete, stand-alone microprocessor with a symmetrically organized instruction set. Its
features include:

« 16-bit general purpose processor

» word addressing yielding a 64K word (128K byte) memory size

« eight general purpose registers (one aiso being the program counter)
* 16-bit instructions

o register-register, register-memory, or memory-memory operation is allowed with all
instructions

o two-address instruction format

e register, register indirect, register indirect with post-increment, or register indirect with pre-
decrement addressing mode are individually supported for both operands for all instructions

o general-purpose conditional move instruction

» Boolean, natural number, and integer operational specification
o geparate ALU for effective address generation

* memory mapped 1O

o compact functional description

the microprocessor.

Al registers may be used as index registers or as software stack pointers. Four status bits - carry (C),
overfiow (V), negative (N), and zero (Z) -- can be conditionally set
access 216 memory locations, each one word (16-bits) in size; FM8501 can directly manipulate 128K

lon

i
§
g
g

Byles of memory.

Al FM8501 instructions are one word (16-bits) in size. Every instruct
destination location, each of which or

specily two kinds of information: thoopnlbntobopodomndudthobédbndhopo“onwhbh

;
{

We have proved the FM8501 in the following sense. The specification of the machine is an instruction
interpreter for ks machine language. The interpreter is defined as a sell-recursive function with each

Final Repon

Micro-'eymy

Figure 1: A Vertically Verified System

recursion corresponding 10 a single state transition. This interpreter formally specifies the effect of
executing each possible instruction and may be thought of as a formal version of a programmer's manual
for the device. The implementation of the FM8501 is a gate graph containing about 1700 Boolean gates,
not counting those necessary 0 implement registers, latches, memory, eic. We have mechanically
proved that the gate graph logically implements the instruction interpreter.

3.2 The Separation Kernel

implementing the Rose runtime support software in Micro Gypsy requires multi-tasking. We are
working on the proof of correctness of a small multi-tasking operating system designed for a simple von
Neumann computer. The verification of the operating system includes two kinds of properties:

o Task isolation. We prove that the operating system, running on a single hardware processor,
simulates a fixed number of isolated parallel tasks.

o Correctness of operating system services. The operating system provides the following
services not provided by the bare target machine: message passing among tasks, and
character 1/O primitives to asynchronous devices.

The statement of the problem requires the definition of three machines: a task, an abstract operating
system, and the target machine on which the operating system will run.

A task is modeled as a single address space of the target machine, plus the shared resources
necessary to implement communication with other tasks and devices. This model ensures that a task’s
address space is isolated in the sense that no other task can perform a transition on it.

The abstract operating system specifies an operating system which manages a fixed number of tasks.
The functionality specified for this operating system includes a round-robin scheduler, an error trap
routine, VO interrupt handlers, and supervisor service handiers for message passing and VO.

The target machine is a two-state machine (supervisor and user modes) with 1/O interrupts and with
memory protection provided by base/limit registers. The instruction set and addressing modes are
conventional, resembling a subset of the capabilities of a PDP-11. The operating system which is
ultimately verified is written in the machine code of this target machine.

The correctness proof of the operating system takes two steps. First, we prove that the abstract
operating system implements a system of paraliel processes. mmmﬁnmmtml‘:ny
an isolated

§.

Fina) Report 7

Micro Gypsy contains a Iarge part of the sequential component of Gypsy, including exception handling.
Principal features of Gypsy not included (at present) in the subset are dynamic data structures,
concurrency, and data abstraction. Early experience with Micro Gypsy has convinced us that it contains
sufficient functionality to code many of the examples in the literature of full Gypsy.

The compiler for Micro Gypsy is being written in Rose (i.e. the Boyer-Moore logic) and proven in the
Rose verification system (i.e. the Boyer-Moore theorem prover, with some modifications). Major
components of the compiler and its specification include the following.

o A pre-processor translates from Gypsy syntax into a LISP-like prefix syntax. In the process
it eliminates all expression evaluation in favor of calls to standard Micro Gypsy procedures.

e A recognizer checks the output of the pre-processor for acceptability to the translation
process. The recognizer will eventually be obviated when it is proven that the pre-processor
always generates acceptable input to the Micro Gypsy compiler.

» The Micro Gypsy Interpreter provides an operational semantics for Micro Gypsy. Its input
is a program in prefix form and a legal Micro Gypsy state; the result is a state.

» The assembly language interpreter provides an analogous operational semantics for the
target language.

e The transiator takes as input a legal Micro Gypsy program and produces a semantically
equivalent program in the assembly language.

o Several mapping functions transiate between Micro Gypsy and assembly language states.

The correctness theorem for the compiler states that a Micro Gypsy program interpreted on a legal Micro
Gypsy state is semantically equivalent (under the mappings) to its translated version interpreted on the
oorrespolnc]ﬁng assembly language state. The formal statement of the theorem and more discussion are
given in [4].

The following progress has been made under the current contract.
1. A complete definition of Micro Gypsy was formulated and documented in a draft
manual [23]. Additionally, examples of the use of Micro Gypsy were devised to illustrate the
translation of Micro Gypsy syntax to the abstract prefix syntax [24, 25).

2. A preprocessor was writlen; details are given in the next subsection.

3. The two interpreters, recognizer, iranslator, and mapping functions were each written as
Rose functions for the complete subset.

4. The proof of correctness was begun.

The proof strategy which we evoived was to verify the compiler with a minimal subset of the language
wwecmwymtmmum“mmmmmmm We currently have a proof of a
very simple version of the system with only four Irwuabm NO-OP, SIGNAL, PROG2, and LOOP, and
whachomyalowsrmnmnodm\r Thbhasolvonusanmwlonhe
complexity of the task which remains, but also a wealth of insight into the strategies required to compilete
R. We envision adding the instructions IF, BEGIN-WHEN, and PROC-CALL and adding data structures
ARRAY and RECORD.

3.4 Micro Gypsy Parser
A parser for Micro Gypsy was written in Rose. In the context of the previous subsection, this is the
preprocessor for translating Micro Gypsy programs info a Lisp-iike syntax which is recognized by the
recognizer. The parser converts a string of characters, representing a micro-Gypsy program, into the
form expecied by the micro-Gypsy compiler. There are five components:
1. mmmam«m\gmamdm 0.0.. numbers, names,

Final Report 8

2. The tree constructor converts a sequence of tokens into a tree representation of the
original Gypsy syntax. This component marks as errors tokens that do not fit into the Gypsy
syntax.

3. The prefix constructor converts the Gypsy syntax tree into a prefix form that is similar to
compiler input and is more convenient for subsequent processing.

4. The parser proper checks that the Gypsy tree represents a legitimate micro-Gypsy
program, marking errors such as type inconsistencies and undefined names. This
component also simplifies some Gypsy constructs. For example, it converts case
statements to if statements, removes expressions from actual parameter lists, and simplifies
structures that handle exception conditions.

5. The final component flattens the Gypsy namespace structure. It provides a single list of
procedure definitions, which are no longer divided into Gypsy scopes. This component also
constructs a type table, containing fully expanded definitions of all types in the program.

The Rose parser was modified to run in Lisp. The Lisp version was tested successfully on several
micro-Gypsy examples.

There was some progress toward proving that parser output is acceptable to the recognizer for micro-
Gypsy compiler input. This work was centered on the acceptability of the type table. Specification
functions were written for the part of the parser relevant to type table construction. A paper proof that the
type table is acceptable to the recognizer, on the assumption that the parser satisfies its specification, is
near completion.

3.5 Computer Security

Computer security certification is a likely immediate beneficiary of our work on Micro Gypsy and Ava
because important progress that is now being made in using normal Gypsy software proofs methods to
prove computer security [26).

A non-interference model of security has been devised and proved for the Honeywell SAT system
abstract model [26). A non-interference model for the low water mark problem was specified and proved
correct both in Gypsy and Boyer-Moore [18]. Each version had advantages and disadvantages and we
expect to exploit our observations made in [18] in designing Rose.

4 Proving Functional Systems

Thus far, we have focused primarily on Rose as a logic and a specification language. However, Rose
is executable and can, in principle, be used to implement systems. We imagine Rose eventually being
used as a functional programming language. The primary attraction is simplicity: both hardware and
software systems can be specified, implemented, and proved in a single formalism.

We are expecting the computing world to make great strides in finding efficient implementations of
functional languages. Several interesting such developmenis have already been taking place in the last
few years, including specialized hardware for graph reduction [21), the G-machine implementation on
conventional hardware [17, 20), and compilation techniques such as the serial combinator approach [16).
The seeming potential for the exploitation of concurrency through functional languages is well recognized,
and may cause a breakthrough in performance. However, even now, there are important applications
(where efficiency is not o0 much of an issue) for Rose as a programming language.

“w"ﬁ"v;mm" m of cooperating ential functions (a simple multiplexor/demultipiexor
m.:n).ammhmm'mnfwmmqumtd1m. Some theorems were aiso proved
about & version of the OSIS fiow modulator, whose Gypsy version is described in[10). Ouring this

Final Report

contract, however, these theorems were proved in Rose (i.e. with the Boyer-Moore theorem prover). The
Boyer-Moore version of the specification is more abstract than the Gypsy version, in that the input stream
is a list of "messages™. Theorems about this MFM were also stated that are much stronger than the
corresponding (proved) Gypsy statements.

Final Report

I. ICS Technical Reports since January 1985

TR# Date Author Title (some abbreviated)
59 May 87 Kaufmany Comparing Gypsy and the
Young Boyer-Moore Logic for
Specitying Secure Systems
58 Apr87 Shankar Proot-Checking Metamathematics
[
v 57 Apr87 Kim On Automatically Generating and
& g Using Examples in a Computational
:, Logic System
> 56 Apr87 Kim Measure Guessing: On Experiment
" with Hypothesis Generation from
35 : Examples
?," . 55 Feb87 Boyer/Moore User's Manual
« p
e 54 Feb87 Bevier, Hunt, Toward Verified Execution
‘ and Young Environments
Al
P 53 Dec86 Chou Methods and Examples in Mechanical
; : Geometry Theorem Proving
3
e 52 Nov86 BoyerMoore The Addition of Bound Quantifiers and
Pantial Funciions to the Boyer-Moore
Wy Logic and Theorem Prover
W
::E;: 51 May86 Cohen Proving Gypsy Programs
o
»:.:: 50 Ji8e Chou Proving Geometry Theorems Using Wu's
i Method
- 49 Dec85 Chou Proving and Discovering Geometry
X ,:::; Theorems Using Wu's Method
s 48 Feb86 Good/Akers’ Report on Gypsy 2.05
Smith
47 Dec85 Hunt FMB8501: A Verified Microprocessor
46 Jan85 Kim EGS: A Transformational Approach to
Automatic Example Generation
45 Jan85 Shankar A Mechanical Proof of the Church-Rosser
Theorem
44 Jan85 Boyer/Moore integrating Decision Procedures

into Heuristic Theorem Provers

. Final Report 1

! H. Internal ICS Notes since January 1985

K Note

. Number Date Author Title (some abbreviated)

’ 237 Feb 87 Akers/ An introduction to the NQTHM Interpreter
» L. Smith

v 236 Feb87 Kaufmann A Mechanically-checked Semi-interactive

s Proof of Comectness of Gries's
Algorithm for Finding the Largest Size

A of a Square True Submatrix
A 235234 Feb 87 Kaufmann A Primitive Users Manual for an
2 interactive Version of the Boyer-Moore
oY Theorem-Prover (Parts 1 & 2)
N 233 DRAFT Sieberv internal Representation of
Akers Micro-Gypsy
232 Nov 86 L. Smith THM Mode
~ 231 Oct 86 Young A Queue Package in Micro-Gypsy
> 230 Oct 86 Akers A Design for an NQTHM Iinterpreter
> 229 Oct 86 Kautmann “NQTHM" Version of Boyer-Moore
p 228 Oct 86 L. Smith Backup
> 227 Sep86 Good Foundations
226 Sep 86 Akers Gypsy 2.1 Predefined Function and
Statement Decriptions
Ty 225 Sep 86 Akers Justification for the New-GVE implementation
oy 224 Sep 86 Akeors Justification for the Gypsy 2.05 Dialect
X, 223 Sep 86 Akers A Proposal for Reviging Gypsy Hold Spec
0 Requirements
222 Sep 86 Akers internal Representation of Executabie
it Micro Gypsy
" 221 Aug 86 Good The Formal Definition of Micro Gypey
“ 220 Aug 86 Bevier The Correctness of a Small Operating System
- 219 Jut 88 Akers Discussions of GVE Akernation Causes
i 218 Jun 86 Young The Semantics of Micro Gypey
: 217 Jun 86 Young Hommner's Algorithm in Micro Gypsy
- 216 Jun 86 Young A Recognizer for Micro Gypsy
" 215 May 86 Akers The White Rose Window interface
. 214 May 86 Good DRAFT-in Support of THM
f 213 Apr 86 Young Proofs
o 212 Apr 86 Young ’IT::: éow Water Mark Problem Using Non-interf.
' 211 Apr 86 Young aclorial Example
C 210 Jan86 Bevier Onthe Wel-Definedness of Gypsy Expressions
4y 209 Jan 86 Akers Gypsy Data Abstraction
* 208 Jan 86 L.Smith Gypsy Dislect
: 207 Dec 85 Good Rose Development System
206 Dec 85 Good The Rose Function Space
205 Dec 85 Good Bootstrapping Techniques
, 204 Oct 85 Good Liep in Rose
R 203 Oct 85 Good Rose 84
o 202 Jan 86 B.Young Gypsy Paginator
e 201 Nov 85 LESmith Qypsy mode in Zmacs
200 Oct1 85 MSmith Repsonses 1o Gypsy Critiques
199 Oct 85 draft Akers Gypsy 2.0 GVE implementation

Final Report

198
197
196
195
194
193

192
191

190
189
188
187
186
185
184
183
182
181

Akers

Sep 85
Oct 85 draft Good
Sep 85 Akers
Sep 85 Akers
Sep 85 LSmith
Sep 85 Good/
M.Smith
Sep 85 Good/
McHugh
Sep 85 Good..
Aug 85 Cohen
Aug 85 L.Smith
Sep 85 Good
Jul 85 Bevier
Jun 85 TBD Young
Oct 85 Good
Jun 85 Good
Oct 85 Good
Jun 85 Good
Sep 85 Good
Jun 85 Good
Sep 85 Good
Jun 85 Good
Jun 85 Good
Jun 85 Good
Oct 85 Good
Jun 85 Good
Jun 85 Good
Jun 85 Good
Jun 85 Akers
Sep85 Good
Sep 85 Good
Sep 85 Good
May 85 Good
Apr 85 Good
Apr85 Good
Apr 85 Good
Apr 85 Good
Feb 85 Bevier
Feb 85 Bevier
Feb 85 draft Good..
Feb 85 Good
Jan 85 M.Smith
Jan 85 M.Smith

12

The Automated GVE Testbed

Proving Computing Systems in Ada

Bug Tracking Procedures

Implementation Proposals for Abstract Equality
Gypsy Interface with TSV05 Magtape

Software Verification in Gypsy

Iinformation Flow Tool for Gypsy
Building Software Economically

with Mechanized Logic

New GVE File Directories

Burning Gypsy programs into PROM
Notes on Revised SPECIAL and ENHANCED HDM
The Multics Maclisp Version of the GVE
Security in an Abstract Setting

Proof of Ordered Search

Gypsy Ordered Search

Proof of Linear Search

Gypsy Linear Search

Proof of Object Array Theory

Gypsy Object Array Theory

Proof of Ordered Object Theory
Gypsy Ordered Object Theory

Proof of Two Channel Mover Il
Gypsy Two Channel Mover |l

Proof of Two Channel Mover |
Gypsy Two Channel Mover |

Proof of Carrier Connection

Gypsy Carrier Connection
Comparison of FORMAT directives
DRAFT Notes on FDM

Notes on FDM

Notes on Affirm

Gypsy 10 without Buffers

Micro Filter: Variation #4

Micro Filter: Variation #3

Micro Filter: Variation #2

Micro Filter: Variation #1

Symbol Table Proofs

Saddie Back Search

KAIS FEU Issues

RSRE Crypto Controller

Low Water Mark: Simple Version
Low Water Mark Using Abstract Data Type Logs

References

1. Robert L. Akers. A Design for an NQTHM Intepreter. internal Note #230, institute for Computing
Science, The University of Texas at Austin.

2. Robert L. Akers & Lawrence M. Smith. The White Rose Window Interface. intemal Note #215,
Institute for Computing Science, The University of Texas at Austin.

3. Robert L. Akers & Lawrence M. Smith. An introduction to the NQTHM interpreter. internal Note (10
appear), institute for Computing Science, The University of Texas at Austin.

4. W.R. Bevier, W.A. Hunt, W.D. Young. Toward Verified Execution Environments. Proceedings of the
1987 Symposium on Security and Privacy, IEEE, 1987.

5. Robert S. Boyer and J Strother Moore. The User's Manual for A Computational Logic. ICSCA-
CMP-55, Institute for Computing Science, The University of Texas at Austin, March, 1987.

6. R. S. Boyer and J. S. Moore. A Computational Logic. Academic Press, New York, 1979.

7. R.S. Boyer and J S. Moore. Metafunctions: Proving Them Correct and Using Them Efficiently as
New Proot Procedures. in The Correctness Problem in Computer Science, R. S. Boyer and J S. Moore,
Eds., Academic Press, London, 1881.

8. R.S. Boyer and J S. Moore. The Addition of Bounded Quantification and Partial Functions 10 the
Boyer-Moore Logic and Theorem Prover. ICSCA-CMP-52, institule for Computer Science and
Computing Applications, The University of Texas at Austin, January, 1987.

9. Norman Delisle and Mayer Schwartz. Neptune: a Hypertext System for CAD Applications. CR-85-50,
Computer Research Laboratory, Tektronix Laboratories, Tektronix, Inc., January, 1988.

10. Donald I. Good, Ann E. Siebert, Lawrence M. Smith. Message Flow Modulator - Final Repont.
ICSCA-CMP-34, Institute for Computing Science, The University of Texas at Austin, December, 1982.

11. Donaid |. Good. Notes on Affim. intemnal Note #169, inatitute for Computing Science, The
University of Texas at Austin.

12. Donald I. Good. Notes on FDM. internal Note #170-A, institute for Computing Science, The
University of Texas at Austin.

13. Donald |. Good. Notes on Revised SPECIAL and ENHANCED HDM. inemal Note #188, instiute
for Computing Science, The University of Texas at Austin.

14. Donald I. Good, Robert S. Boyer, J Strother Moore. Trusted Systems from Mechenized
Logic. Institute for Computing Science, The University of Texas at Austin, , 1908

15. Donald I. Good. The Formal Definktion of Micro Gypey. internal Note #221, insthute for Computing
Science, The University of Texas at Austin.

16. P. Hudak and B. Gokdberg. Serial Combinators: 'Optimal’ grains of Paralieliem. In FF\P Conference
on Functional Programming Languages and Computer Arcchileckure, Nancy, France, September 1985,
Lecture Notes in Computer Science 201,

Springer-Verlag, Berfin, 1985, pp. 382-388.

17. Thomas Johnsson. “Efficient Compiiation of Lazy Evalustion”. SIGPLAN Notices 19 (June 1984),
58-69.

18. Matt Kauf , William D. Y cum-z for Seoure Systems: Gypey
andtmaoyormﬂ.oolc. mmdnm1 mm
19. Richard Kemmerer. Verilication Asssssment Siudy Final Report. In § volumes, unpublished.

Final Report

20. Simon L. Peyton-Jones. The Implementation of Functional Programming Languages. Prentice-Hall
international, London, 1987.

21. Mark Scheevel. NORMA: A Graph Reduction Processor. 1986 ACM Conference on Lisp and
Functional Programming, 1986.

22. William D. Young. A Recognizer for Micro Gypsy. Internal Note #2186, Institute for Computing
Science, The University of Texas at Austin.

23. William D. Young. The Semantics of Micro Gypsy. Internal Note #218, Institute for Computing
Science, The University of Texas at Austin.

24. William D. Young. A Queue Package in Micro-Gypsy. Internal Note #231, Institute for Computing
Science, The University of Texas at Austin.

25. William D. Young. Homer’s Algorithm in Micro Gypsy. Intemal Note #217, Institute for Computing
Science, The University of Texas at Austin.

26. William D. Young, J. Thomas Haigh. Extending the Non-Interference Version of MLS for SAT.
Symposium on Security and Privacy, April, 1986.

14

